extension | φ:Q→Aut N | d | ρ | Label | ID |
C32.1(He3:C2) = C92:2S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 27 | 3 | C3^2.1(He3:C2) | 486,61 |
C32.2(He3:C2) = C34.7S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.2(He3:C2) | 486,147 |
C32.3(He3:C2) = (C32xC9):S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.3(He3:C2) | 486,149 |
C32.4(He3:C2) = C3xC33:S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 18 | 6 | C3^2.4(He3:C2) | 486,165 |
C32.5(He3:C2) = C3xHe3.3S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.5(He3:C2) | 486,168 |
C32.6(He3:C2) = C3xHe3:S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.6(He3:C2) | 486,171 |
C32.7(He3:C2) = C3x3- 1+2.S3 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 54 | 6 | C3^2.7(He3:C2) | 486,174 |
C32.8(He3:C2) = C33:(C3xS3) | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.8(He3:C2) | 486,176 |
C32.9(He3:C2) = He3.C3:2C6 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.9(He3:C2) | 486,177 |
C32.10(He3:C2) = He3:(C3xS3) | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.10(He3:C2) | 486,178 |
C32.11(He3:C2) = C3.He3:C6 | φ: He3:C2/C32 → S3 ⊆ Aut C32 | 27 | 18+ | C3^2.11(He3:C2) | 486,179 |
C32.12(He3:C2) = C3.2(C9:D9) | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 162 | | C3^2.12(He3:C2) | 486,42 |
C32.13(He3:C2) = (C3xHe3):S3 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.13(He3:C2) | 486,43 |
C32.14(He3:C2) = (C3xHe3).S3 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.14(He3:C2) | 486,44 |
C32.15(He3:C2) = C33.(C3:S3) | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.15(He3:C2) | 486,45 |
C32.16(He3:C2) = C32:C9:6S3 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.16(He3:C2) | 486,46 |
C32.17(He3:C2) = C3.(C33:S3) | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.17(He3:C2) | 486,47 |
C32.18(He3:C2) = C3.(He3:S3) | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.18(He3:C2) | 486,48 |
C32.19(He3:C2) = C32:C9.10S3 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.19(He3:C2) | 486,49 |
C32.20(He3:C2) = C33:2D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 27 | | C3^2.20(He3:C2) | 486,52 |
C32.21(He3:C2) = (C3xC9):5D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.21(He3:C2) | 486,53 |
C32.22(He3:C2) = (C3xC9):6D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.22(He3:C2) | 486,54 |
C32.23(He3:C2) = He3:2D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.23(He3:C2) | 486,56 |
C32.24(He3:C2) = 3- 1+2:D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.24(He3:C2) | 486,57 |
C32.25(He3:C2) = C3xC32:2D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.25(He3:C2) | 486,135 |
C32.26(He3:C2) = C33:6D9 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 54 | | C3^2.26(He3:C2) | 486,181 |
C32.27(He3:C2) = C34:7S3 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 27 | | C3^2.27(He3:C2) | 486,185 |
C32.28(He3:C2) = He3.(C3:S3) | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.28(He3:C2) | 486,186 |
C32.29(He3:C2) = C3:(He3:S3) | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.29(He3:C2) | 486,187 |
C32.30(He3:C2) = (C32xC9).S3 | φ: He3:C2/He3 → C2 ⊆ Aut C32 | 81 | | C3^2.30(He3:C2) | 486,188 |